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Abstract 

In this paper, the implementation of Gaussian elimination and Gauss-Jordan reduction are 

discussed in detailed explanations. There were several results from various research journals 

compared to comprehend the concepts and practices of both methods. The goal was to analyze the 

differences of Gaussian elimination and Gauss-Jordan reduction regarding the application, 

algorithm, complexity, efficiency, problem-solving ability, and stability. As the result, we found 

that the Gauss-Jordan reduction has lower time efficiency and greater residual (the error in the 

result) in problem-solving ability. The rests are somewhat similar. In practice, those differences are 

a substantial consideration in choosing the most suitable method for a particular linear equations’ 

problem, especially when accuracy and computation time have a significant impact on the result. 
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I. Introduction 

Computing technology has brought a 

significant impact in resolving a particular 

computational problem, e.g., in solving a 

system of linear equations, a collection of 

equations with the same set of variables 

which can be drawn as straight lines in the 

Cartesian graph. In that case, the stability 

and efficiency of a method is a primary 

concern, especially in a large computation 

for there will be more time needed to solve it 

than to solve the smaller ones [1]. Therefore, 

deciding which method to use is an 

important thing. 

One of the most widely used methods 

for solving a system of linear equations is 

Gaussian elimination [2]. It is usually taught 

in high school linear algebra subject. Further, 

there is a variation of this method (i.e., 

Gauss-Jordan reduction [3]) which brings a 

slight improvement in terms of the result. 

In some research journals (for example 

in “Open-Multi Processing of Gauss-Jordan 

Method for Solving System of Linear 

Equations” [4], “Modification of Gaussian 

Elimination for the Complex System of 

Seismic Observations” [5], etc.) which will 

be presented in the next section, several 

concepts and practices are discussed by the 

authors regarding the Gaussian elimination 

and Gauss-Jordan reduction, including the 

development of each method for better 

usability. In this paper, we summarize those 

concepts and practices to understand the 

differences in terms of the application, 

algorithm, complexity, efficiency, problem-

solving ability, and stability of Gaussian 

elimination and Gauss-Jordan reduction. 

 

II. Discussion 

Gaussian elimination (or row reduction) 

is usually associated with producing the 

echelon form of a matrix [6]. Anany Levitin 

[7] explains that the idea of this method is to 

transform a system of m linear equations 

with n unknown variables into an equivalent 

system which has the same solution as the 

original equations. The equivalent system is 

in the form of an upper-triangular matrix (a 
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matrix that all of the entries below the main 

diagonal are zeros). 

Historically, many mathematicians have 

contributed to the Gaussian elimination 

method. One of the most well-known 

contributors to this method is Carl Friedrich 

Gauss (in the early 19
th
 century). In 1953, an 

influential American mathematician, George 

Forsythe [8], misattributed “high school 

elimination” as “Gaussian elimination” and 

eventually made Carl F. Gauss appeared as 

the originator of the method although there 

are many contributors before him, including 

physicist Sir Isaac Newton in 1670 [9]. Then 

in 1888, Wilhelm Jordan [10] improved the 

Gaussian elimination in order to achieve 

simpler and more straightforward result in 

solving a system of linear equations, but with 

more complex arithmetic computations as 

the trade-off. It is then known as the Gauss-

Jordan reduction method. 

The term of Gauss-Jordan reduction 

refers to a procedure which ends in reduced 

echelon form (same as the form of an 

identity matrix if there is a unique solution to 

the equations), while in Gaussian 

elimination, the result is in echelon form. In 

reduced echelon form, every leading 

coefficient is ‘1’ and is the only non-zero 

entry in its column [3], while in echelon 

form this isn’t the case. 

 

II.1. Application 

The first historically known application 

of the Gaussian elimination is for solving a 

system of linear equations. In the further 

development, this method can also be used to 

find the rank and base of a matrix, solve the 

inverse of an invertible square matrix, and 

calculate the determinant of a square matrix. 

As for Gauss-Jordan reduction, it has similar 

functions as Gaussian elimination, except for 

calculating the determinant which is not 

possible in Gauss-Jordan reduction. Both 

methods rely on the elementary row 

operations to reduce a matrix into an echelon 

form (in Gaussian elimination) or a reduced 

echelon form (in Gauss-Jordan reduction). 

There are three types of elementary row 

operations that can be performed on a 

matrix, i.e.: 

1) Swap rows positions (this is an essential 

operation when one or more diagonal 

entries are equal to zero). 

2) Add a scalar multiple of one row to 

another row. 

3) Multiply a row with a non-zero scalar 

value. 

Both the Gaussian elimination and 

Gauss-Jordan reduction may be summarized 

as follows: eliminate x1 from E2, eliminate x1 

and x2 from E3, eliminate x1, x2, and x3 from 

E4, and so on. In the result, Gaussian 

elimination will put the system of linear 

equations into a triangular matrix form and 

each unknown variable can be solved using 

the back-substitution technique, while 

Gauss-Jordan reduction will put the system 

into an identity matrix form (if there is a 

unique solution), consequently it doesn't 

need back-substitution. Table 1 shows the 

application example of both Gaussian 

elimination and Gauss-Jordan reduction 

using elementary row operations in solving a 

system of linear equation. 

 

 

Table 1. Example of Gaussian Elimination 

and Gauss-Jordan Reduction 

Equations 
Augmented 

Matrix 

 x1 + 5x2 =   7 

-2x1 - 7x2 = -5 
 

Step 1: add twice Row 1 to Row 2 

(R2 = 2 * R1) 

x1 + 5x2 = 7 

3x2 = 9 
 

Step 2: multiply Row 2 by 1/3 

(R2 = R2 * 1//3) 

x1 + 5x2 = 7 

x2 = 3 
 

Step 3: add -5 times Row 2 to Row 1 

(R1 = -5 * R2 + R1) 

x1 = -8 

x2 = 3 
 

 

The procedure is called Gaussian 

elimination when it ends in Step 1 (echelon 

form), while it is called Gauss-Jordan 

reduction when it ends in Step 3 (reduced 
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echelon form). When using the Gaussian 

elimination (Step 1), the value of x2 needs to 

be calculated, which is equal to 9/3. Then, 

the first equation can be solved using back-

substitution, which is x1 + 5(9/3) = 7, as the 

result x1 = -8. On the other hand, when the 

procedure is carried out until step 3, back-

substitution will not be needed because the 

solutions have been found, which are x1 = -8 

and x2 = 3. 

In the past few years, some researchers 

have applied and modified both Gaussian 

elimination and Gauss-Jordan reduction for 

several uses, e.g., Luke Smith [11], Jun Ji 

[12], Dasgupta [13], and Tatyana 

Smaglichenko [5]. Luke Smith improved the 

Gauss-Jordan reduction by minimizing 

produced fractions to make the calculations 

easier. Jun Ji implemented the Gauss-Jordan 

reduction as an alternative method to Moore-

Penrose matrix inversion. Dasgupta modified 

the Gauss-Jordan reduction to be more 

resource efficient in matrix inversion. 

Tatyana Smaglichenko implemented the 

Gaussian elimination for practical use in 

seismic observations. 

 

II.2. Algorithm 

In practice, one doesn’t usually deal 

with equations but instead more of 

translating them into an augmented matrix, 

which is more suitable for computing 

algorithm. In the book of “Introduction to the 

Design and Analysis of Algorithms 3rd 

Edition,” Anany Levitin [7] gave an example 

of Gaussian elimination algorithm with 

partial pivoting by using augmented matrix 

A [1 to n, 1 to n] and column-vector B [1 to 

n] as the inputs. The output is an equivalent 

system (upper-triangular matrix) of A with 

the corresponding right-hand side values in 

the (n + 1)st column. The algorithm is as 

follows: 
 

1) //appends B to A as the last column 

2) for i ← 1 to n do A[i, n + 1] ← B[i] 

3) for i ← 1 to n - 1 do 

4)      //partial pivoting 

5)      p_row ← i 

6)      for j ← i + 1 to n do 

7)           //absolute values comparison 8)           //for partial pivoting 

9)           if |A[j, i]| > |A[p_row, i]| 

10)           p_row ← j 

11)      for k ← i to n + 1 do 

12)           swap (A[i, k], A[p_row, k]) 

13)      for j ← i + 1 to n do 

14)           temp ← A[j,i] / A[i, i] 

15)           for k ← i to n + 1 do 

16)                //The actual row operations 

17)                A[j,k]← A[j,k] - A[i, k] ∗ 

temp 

 

Before eliminating a variable, the 

algorithm first exchanges rows to move the 

entry with the selected p_row value to the 

pivot position using partial pivoting. In this 

pivoting technique, the algorithm selects the 

entry with the largest absolute value from the 

matrix’s column or row as a pivot, which in 

the example using the matrix’s row. It is 

sufficient to reduce round-off error. 

However, for a particular system, another 

pivoting technique (i.e., complete pivoting) 

may be required for better accuracy and 

stability. It does the similar thing as partial 

pivoting except it interchanges both rows 

and columns. Complete pivoting is usually 

unnecessary, considering the additional cost 

of searching for the maximal pivot element. 

Therefore, it is rarely used [14]. 

Upon completion of the algorithm, the 

augmented matrix will be in echelon form. 

Then, the equations can be solved using 

back-substitution. On the other hand, the 

Gauss-Jordan reduction has a slightly 

different algorithm (see the example in 

subsection 2.3). 
 

 

II.3. Complexity and Efficiency 

The complexity of the Gaussian 

elimination can be calculated using 

summation which is determined by how 

many nested loops exist [7]. It begins from 

the innermost loop (see the algorithm 

example in subsection 2.2). Note that there 

are three nested loops in the example (see the 
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gray marked lines). Here is the summation 

calculation of the Gaussian elimination 

complexity: 
 

 
 

Based on the summation, the arithmetic 

complexity of the Gaussian elimination is 

equal to O (n
3
) by using big-O notation. This 

complexity also applies when solving the 

inverse of an invertible square matrix or 

calculating the determinant of a square 

matrix. The complexity simulation of this 

method is given in Figure 1. 

Theoretically, Gauss-Jordan reduction 

shares the same complexity of O (n
3
) as the 

Gaussian elimination but is a bit slower 

because of the additional steps to form the 

reduced echelon form [1]. In many cases, 

achieving reduced echelon form is 

unnecessary. Therefore, Gaussian 

elimination is often preferred. 

 

 

 

Figure 1. Gaussian Elimination’s Complexity 

However, Gaussian elimination 

algorithm isn’t always the fastest for modern 

computing. Some programming libraries (for 

example BLAS, LINPACK, and LAPACK) 

can exploit specific computer hardware 

architecture and analyze the structure of the 

augmented matrix to select the best 

algorithm automatically. As in the case of 

matrix inversion, there are better alternatives 

to Gaussian elimination such as 

Coppersmith-Winograd algorithm [15] with 

the complexity of O (n
2.375477

) and Strassen 

algorithm [16] with the complexity of O 

(n
2.807355

). While in calculating the 

determinant of a small square matrix (i.e., 

2x2, 3x3, or 4x4), Laplace expansion, 

Sarrus’ rule, Triangle’s rule, Chio’s 

condensation, or Dodgson’s condensation 

will be much simpler with just a single 

calculation [17]. 

As for the time efficiency, in the article 

of “System of Linear Equations, Gaussian 

Elimination,” Gharib et al. [1] showed that 

the Gaussian elimination is more efficient 

over the Gauss-Jordan reduction in solving 

systems of linear equations. Table 2 shows 

the performance comparison of both 

Gaussian elimination and Gauss-Jordan 

reduction (tested by Gharib et al.). 
 

 

 

 

 

 

Table 2. Execution Time of Gaussian Elimination 

No of 

Variables 

Gaussian’s 

Execution 

Time (in 

Millisecond) 

Gauss-

Jordan’s 

Execution 

Time (in 

Millisecond) 

2 14 25 

3 16 31 

4 20 36 

5 26 39 

6 29 56 

7 46 76 

 

In their test, they used a similar 

Gaussian elimination algorithm with the 

example that used by Anany Levitin [7], but 

with an addition to the back-substitution 

algorithm and without pivoting. Originally, 
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the algorithms (both Gaussian elimination 

and Gauss-Jordan reduction that were used 

by Gharib et al.) were used by Nai-Kuan 

Tsao [18] in NASA’s technical 

memorandum of “On the Equivalence of 

Gaussian Elimination and Gauss-Jordan 

Reduction in Solving Linear Equations” in 

1989. Here are the algorithms: 

 

1) //begin reduction to tringular form 

2) //using Gaussian Elimination 

3) for i = 1 to n - 1 do 

4)      for k = i + 1 to n do 

5)           A[k,i] = fl (A[k,i] / A[i,i]) 

6)           for j = i + 1 to n + 1 do 

7)                A[k,j] = fl (A[k,j] - A[k,i] * 

A[i,j] 

8) //begin back-substitution 

9) X[n] = fl (A[n,n + 1] / A[n,n]) 

10) for i = n - 1 downto 1 do 

11)      for j = n downto i + 1 do 

12)           A[i,n + 1] = fl (A[i,n + 1] - 

A[i,j] * 

                   X[j]) 

13)      X[i] = fl (A[i,n + 1] / A[i,i]) 

 

1) //begin reduction to diagonal form 

2) //using Gauss-Jordan Reduction 

3) for i = 1 to n do 

4)      for k = 1 to n (except i) do 

5)           A[k,i] = fl (A[k,i] / A[i,i]) 

6)           for j = i + 1 to n + 1 do 

7)                A[k,j] = fl (A[k,j] - A[k,i] * 

A[i,j]) 

8) //begin solving diagonal system 

9) for i = 1 to n do 

10)      X[i] = fl (A[i,n + 1] / A[i,i]) 

 

In 2011, Michailidis and Margaritis [4] 

improved the efficiency of Gauss-Jordan 

reduction in multicore processing by 

implementing a pipelining algorithm. The 

general idea of the algorithm is that each 

thread executes n successive steps of Gauss-

Jordan reduction on the rows it holds. In 

order to do that, each processing thread must 

obtain the index of the pivot row, send the 

pivot index immediately to the next thread, 

and then proceed with the steps of Gauss-

Jordan method. In their report, Michailidis 

and Margaritis concluded that the 

implementation of pipelining algorithm 

achieved good performance in large systems. 

For practical use, this improvement hasn’t 

widely implemented yet, especially for small 

equation systems, considering the 

computational cost of utilizing additional 

processor cores. 
 

II.4. Problem-Solving Ability and 

Stability 

Regarding the problem-solving ability, 

Foster [2] reported that the Gaussian 

elimination with partial pivoting could lead 

to a substantial failure. She also stated that 

“in n x n matrices, the error growth is 

proportional to 2
n-1

, therefore, for moderate 

or large n, theoretically, there is a potential 

for disastrous error growth.” As for Gauss-

Jordan reduction, Peters and Wilkinson [19] 

reported that if the matrix is ill-conditioned, 

the residual (the error in the result) will often 

be much greater than that corresponding to 

the Gaussian elimination. 

However, the Gaussian elimination 

method (with or without pivoting) can also 

fail to give a unique solution in a square 

matrix if the determinant is zero (the same 

goes for Gauss-Jordan reduction). It 

indicates that there are infinitely many 

solutions or otherwise no solution. Table 3 

shows an example when the Gaussian 

elimination fails in giving a unique solution. 

 

Table 3. Example of Gaussian Elimination’s 

Failure without Pivoting 

Equations 
Augmented 

Matrix 

 x + y + z = 3 

2x + 4y + z = 8 

6x + 10y + 4z = 

22 
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Step 1: subtract Row 2 to 2 times Row 1 

(R2 = R2 - 2 * R1) 

 x + y + z = 3 

2y - z = 2 

6x + 10y + 4z = 

22 
 

Step 2: subtract Row 3 to 6 times Row 1 

(R3 = R3 - 6 * R1) 

 x + y + z = 3 

2y - z = 2 

4y - 2z = 4 
 

Step 3: subtract Row 3 to 2 times Row 2 

(R3 = R3 - 2 * R2) 

 x + y + z = 3 

2y - z = 2 

0z = 0 
 

In the example, the determinant of the 

augmented matrix is equal to zero. It can be 

calculated by multiplying all of the absolute 

diagonal values from the echelon form 

(which is 1·2·0 = 0) or using Sarrus’ rule: 

|A| = aei + bfg + cdh - ceg - bdi - afh 

 = 1·4·4 + 1·1·6 + 1·2·10 - 1·4·6 - 1·2·4 - 

         1·1·10 

 = 16 + 6 + 20 - 24 - 8 - 10 

 = 0 

On the result (see the last row on Table 

3), the equation of 0z = 0 seems trivial, but it 

actually indicates that there are infinitely 

many solutions available. In this case, ‘z’ can 

be replaced with any real number to specify 

a solution to the equations. If for instance the 

variable ‘z’ is equal to ‘t’ number, then the 

second equation will become 2y - t = 2, as 

the result y = ½ (t + 2). 

As for the stability, Gene H. Golub and 

Charles F. Van Loan [20] described that for 

general matrices, Gaussian elimination with 

partial pivoting is usually considered to be 

stable. On the other hand, Peters and 

Wilkinson [19] reported that the overall 

stability of Gauss-Jordan reduction is 

comparable with that corresponding to the 

Gaussian elimination using partial pivoting 

and back-substitution. 

 

3. Conclusion 

Gauss-Jordan reduction and Gaussian 

elimination have similar functions, which are 

to solve a system of linear equations, find the 

rank and base of a matrix, and solve the 

inverse of an invertible square matrix (in 

exception of calculating the determinant of a 

square matrix, which Gauss-Jordan reduction 

is incapable). Both methods are quite similar 

in terms of algorithm, arithmetic complexity, 

and stability. In theory, although the 

Gaussian elimination shares the same 

complexity of O (n
3
) as Gauss-Jordan 

reduction, in practice, the latter has lower 

time efficiency and greater residual (the error 

in the result) in problem-solving ability. 
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